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Abstract 

 

Boom-bust episodes in asset markets have often been interpreted by observers as 
speculative frenzies where asymmetrically informed investors buy overvalued 
assets hoping to sell to a greater fool before the crash. While intuitively appealing, 
this notion of speculative bubbles has been difficult to reconcile with standard 
economic theory. Existing models of speculation have been criticized on the basis 
that they assume irrationality, that prices are somewhat unresponsiveness to sales, 
or that they depend on fragile, knife-edge restrictions. To address these issues, I 
construct a rational version of Abreu and Brunnermeier (2003), where agents invest 
growing endowments into an asset, fueling appreciation and eventual overvaluation. 
Riding bubbles is optimal as long as the price grows quickly and there is a 
probability of exiting before the crash. This probability increases with the amount 
of noise in the economy, as random price flucutations make it difficult for agents to 
infer sales from the price. 

 

Keywords: Bubbles, Coordination, Noisy Prices  
JEL Classification Codes: G12, G14

                                                 
* This paper has greatly benefited from comments by John Conlon, Thomas Jeitschko, Timothy Kehoe, Andreas 
Park, Jean Tirole, Juan Rubio-Ramírez, as well as by the editor, Larry Samuelson, and three anonymous referees. I 
am also indebted to participants in various seminars and conferences for their suggestions. All errors are my own. 



1 

1 Introduction 

Over the last two decades, a series of dramatic boom-bust episodes in global asset 

markets have led many economists to give increasing consideration to theories of asset price 

bubbles and to doubt the long dominant efficient market hypothesis.   

Asset price bubbles are often called speculative bubbles, a term that already suggests a 

conceptualization of bubbles in which market timing plays a crucial role, with investors buying 

overvalued assets hoping to sell to a greater fool before the crash. This idea is not new. For 

instance, Kindleberger and Aliber (2005) describe numerous historical boom-bust episodes that 

were seen by contemporaneous observers as speculative in this sense. But despite its intuitive 

appeal, the notion of a speculative bubble has traditionally been difficult to reconcile with 

standard economic theory. As Tirole (1982) and Milgrom and Stokey (1982) show, in a wide 

range of environments with finite numbers of rational agents, bubbles are inconsistent with 

rational expectations equilibrium, even under asymmetric information. Roughly, the intuition 

behind these results is that trade in overvalued assets is a zero-sum game, and that, on average, 

agents cannot rationally expect to have better-than-average information.  

Some approaches that have been taken in order to circumvent these impossibility results 

include, among others, introducing some form of irrationality, having heterogenous 

priors/marginal utilites, and assuming an infinite number of overlapping generations. For 

instance, Harrison and Kreps (1978) and Scheinkman and Xiong (2003) consider agents who are 

‘overconfident’ in the sense that they consider their own information to be superior to that of 

others, and fail to fully adjust their beliefs as they observe what others believe. In Abreu and 

Brunnermeier (2003), there are rational agents who ride the bubble—and make profits with a 

certain probability—along with behavioral agents who fuel bubble growth and who are certain to 

suffer losses in the crash. In Allen et al. (1993) and Conlon (2004), agents are rational, but have 

either heterogenous priors, or heterogenous state-contingent marginal utilities that may give rise 

to gains from trade. This approach generates speculative bubbles, but has the drawback of 

relying on fragile, knife-edge parameter restrictions. Another strand of literature (Caballero and 

Krishnamurthy (2006), Fahri and Tirole (2009), and others) builds on Tirole’s (1985) work on 

rational bubbles in overlapping generations models. In these models, bubbles improve efficiency 

by helping overcome a shortage of stores of value, much like money in Samuelson (1958). 

However, the bubbles arising in these models have perhaps less of a speculative flavor, as trades 
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are driven by the lifecycle rather than by beliefs, and the focus is often on steady states with 

slow-growing bubbles.1  

The objective of this paper is to contribute to the theory of speculation by developing a 

model that captures the idea of a greater fool’s bubble but avoids the main critiques of previous 

models. To this end, I build a version of Abreu and Brunnermeier (2003)—henceforth referred to 

as AB—in which all agents are rational and prices reflect supply and demand at all times. The 

model inherits from AB the property of being robust to small changes in parameters, and is 

therefore not subject to the fragility critique of Allen et al. (1993) and Conlon (2004).  

Following AB, I assume that rational agents hold a rapidly appreciating asset. For some 

time, rapid price growth is justified by fundamentals, but a bubble arises because the price 

continues to rise past the point where fundamental gains have been priced in. Asymmetric 

information is introduced in the environment in such a way that rational agents remain invested 

in the asset even after learning that is has become overvalued. At different times, different agents 

observe private signals revealing that a bubble has started to inflate. They do not know when 

others observe the signal, but they know that, in equilibrium, those who observe the signal 

relatively early can ride the bubble, sell before the crash and make profits. If the likelihood of 

being an ‘early-signal’ agent and the price growth rate are high enough, investing in overvalued 

assets is optimal. To embed these ideas into a rational model, I depart from AB in the following 

ways. In AB, bubble growth is fueled by behavioral agents who invest growing amounts into the 

risky asset and are doomed to ‘get caught’ in the crash. Instead of behavioral agents, I assume 

that rational agents are entitled to growing endowments, which they invest in the bubble as long 

as they do not expect an imminent crash. Importantly, these endowments cannot be pledged as 

collateral, i.e., agents cannot borrow against their time-t endowment at some earlier date .s t  

Besides the endowment, another new ingredient in the model is a preference shock, which forces 

a fraction t  of agents to sell for reasons—such as life events or liquidity needs—unrelated to 

price expectations. This ensures that a positive mass of shares is sold every period, even if 

nobody expects an imminent crash.2 Preference shocks also serve another function, adding noise 

                                                 
1 Further approaches to modeling bubbles, which have also been influential, have focused on issues such as agency 
problems (Allen and Gorton (1993), Allen and Gale (2000), Barlevy (2008)), solvency constraints (Kocherlakota 
(2008)), and others. For an survey, see Brunnermeier (2001). 
2 The preference shock shall not be thought of as a substitute for irrational agents, since it does not force agents to 
stay in the market during the crash. On the contrary, it forces some agents to sell before they otherwise would. 
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into the economy.  The fact that t  is subject to random variability makes prices noisy. In turn, 

noisy prices ‘hide’ sales, as late-signal agents cannot distinguish whether a price slowdown is 

due to early-signal agents’ sales or just a high realization of .t  Thus, the likelihood that a given 

agent will be able to sell before the crash increases with the degree to which t  is variable. The 

addition of noise makes it possible for prices to reflect selling pressure at all times without being 

fully revealing. This helps overcome another critique of the AB model, where, in the absence of 

noise, it is assumed that during the (nontrivial) length of time when early-signal agents are 

gradually leaving the market, the price continues to grow as if nobody was selling.3 

To solve the model, I first consider the case where there is so little noise that as soon as 

one type sells (a type includes those who observed the overvaluation signal in a given period), all 

uncertainty is revealed, triggering a crash in the next period. I derive a parameter restriction such 

that, in this effectively noiseless environment, agents sell immediately upon observing the signal. 

Maintaining this restriction, which is an upper bound on the growth rate of the bubble, I increase 

the amount of noise so that it can conceal sales of one type, but not more. Prices (relative to 

trend) then fall into one of three categories. High prices reveal with certainty that nobody has 

sold, medium prices reveal that sales may or may not have begun, and low prices reveal with 

certainty that sales have begun, thereby triggering the crash. This noise specification, coupled 

with Markov strategies, is simple and analytically tractable, in the case where the number of 

types is large. The strategies I consider are Markovian in the sense that agents’ sell-or-wait 

choices depend only on how much time has elapsed since observing the signal and on whether 

the last price observed was high, medium, or low.  Restricting attention to this class of strategies, 

I show that there is a region in the parameter space where bubbles of arbitrary length arise. 

Finally, I relax the assumption—made in the basic analysis for simplicity—that agents cannot 

reenter the market after selling, and show that, although some of the basic-analysis equilibria 

vanish, the overall picture remains unchanged, and bubbles with Markovian strategies still arise.  

 In sum, I develop a model of speculative bubbles based on AB, but with fully rational 

agents and prices that are always market clearing. By avoiding some critiques of previous 

literature, this paper makes models of speculative bubbles more compatible with standard theory, 

and hence potentially more useful as tools for policy analysis.  

                                                 
3 The idea of adding noise to prevent full information revelation is already suggested by AB. In a different context, 
Allen et al. (1993) and Conlon (2004) also speculate that adding noise would make their models more robust.  
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The paper is organized as follows. In sections 2 and 3, respectively, I describe the model 

and define equilibrium. In section 4, I illustrate how bubbles arise in the basic analysis. In 

section 5, I present an extension and I conclude in section 6. 

2 The Model 

2.1 The Environment 

Time is discrete and infinite with periods labeled , 1,0,1, .t     There are two assets, a risk-

free asset with exogenous gross return 1,R   and a risky asset. The supply of the risky asset is 

fixed at 1,  and its price at time t  is tp  units of the risk-free asset. At any time, the risk-free asset 

can be turned into consumption at a one to one rate.  

While 0,t   the risky asset’s fundamental value tf  and the price tp  are equal and given, 

in expected value, by ,tR  where 0.   Starting at 1,t   fundamental shocks cause tf  to grow, 

on average, at the faster rate .G R  Both tf  and tp  grow on average at the faster rate G  until 

0 1.t t   But starting at time 0 1,t   the average 1/t tf f   falls back to ,R  and if tp  continues to 

grow faster than ,R  a bubble arises.4 The bubble inflates until period 0T t  and bursts in period 

1,T   at which point equality between price and fundamental value is restored. Thus, as in AB, 

bubbles arise as markets overreact to developments that are at first fundamental in nature.5 The 

first period of overvaluation 0t  is geometrically distributed with probability function  given by 

   0
0 0                   ( ) 1 for all 1, 2, ,  tt e e t      (1) 

where 0.   The expected value of 0t  is given by 1/(1 ).e   Also, the greater ,  the greater 

the probability of low values of 0t  relative to high values. 

 There is a unit mass of rational agents, indexed by [0,1].i  They do not observe 0t  

perfectly. Instead, every period from  to  a mass 1/ N  of them observe a signal 

                                                 
4 As in AB, the increase in fundamental value does not stem from a rise in current dividends (set equal to zero for 
convenience), but from improving prospects about the future dividends that the risky asset may yield.   
5 According to Kindleberger and Aliber (2005), bubbles typically follow displacements, i.e., major fundamental 
events that cause sizable shifts in prices. Price movements that are justified by fundamentals for some time may turn 
into bubbles if markets overshoot. In keeping with this idea, AB mention episodes in stock markets after the arrival 
of new technologies (e.g., the Internet in the 1990s, the radio in the 1920s) as examples of bubbles. In these cases, 
prices rose dramatically, then crashed, and finally stabilized at a level higher than before the fundamental change but 
below the peak. In Doblas-Madrid (2010), I argue that the idea of a bubble as a temporary overreaction to 
fundamental events can also help to explain exchange rate overshooting in a series of currency crisis episodes.  



0t 0 1,t N 
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revealing that the risky asset is overvalued, i.e., that tf  is no longer growing at the rate G. 

Signals give rise to N  types, 0 0, , 1.n t t N    The function 0 0:[0,1] { , , 1}t t N     

assing a type to each agent. Thus, ( )i n   denotes that agent i  is of type ,n  or, in other words, 

that agent i  observes the signal at time .n  As in AB, agents observe ,n  but not 0.t  If an agent 

observes her signal at time ,n  she knows that 0t  may have been as early as ( 1),n N   or as late 

as .n  (Except for the special case with 0 ,t N  where types with n N  know that 0t  must be 

greater than ( 1),n N   since ( 1) 0.n N   ) Conditional on ,n  the distribution of 0t  becomes 

     
0

0(max{1, ( 1)})
0

      if  max 1, ( 1)
( | )

0 otherwise.

t

n N n

e
n N t n

t n e e



 



   


     


  (2) 

In words, sequential arrival of signals places agents along a line, but agents are uncertain about 

their relative order in the line. This plays a key role in generating bubbles, as all agents—even 

those late in the line—assign positive probability to the event that they could be early in the line. 

 Figure 1 summarizes our assumptions thus far. The boom starting at 1t   is fundamental 

in nature at first, but turns into a bubble at the imperfectly observed time 0.t t  Signals arrive at 

0 0, , 1,t t t N    and bubble duration 0T t  will be endogenously determined in equilibrium. 

 
 
 

Figure 1 — Timeline of events.   
 

Preferences are characterized by risk neutrality and preference shocks à la Diamond and 

Dybvig (1983), which may force agents to liquidate assets and consume. At time ,t  a randomly 

                         Boom
t

t
p G  

    Fundamental                        Bubble             

  t

t t
p f G              t

t t
p G f             

                                                               0 1( / )t t
tf G R R      

  

   Signals   arrive 

           0                                      0 0             1t t N                           1TT                         t 

Post-crash 
 

0 1( / )t t
t tp f G R R  

  
t

t t
p f R 

  ,
t t

p f  

  
Pre-boom  
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chosen mass (0,1)t   of agents are hit by a shock that sets their discount factor ,i t  equal to 

zero. The remaining mass 1 t  have , 1/ .i t R   Agent i’s expected utility is defined as  

   
1

. . , , , ,
1

,i t i i t i t i s it
t s t

E U c E c c


 








  

           
   (3) 

where ,i tc  denotes agent i’s time-t consumption, U  denotes utility, and ,i tE  expectation given 

information available to agent i  in period .t  This includes whether ,i t  is zero, in which case the 

above simplifies to , , .i t i tE c    Preference shocks are i.i.d., and thus, the probability that , 0i t   

does not depend on past values , 2 , 1, , .i t i t    Shocks are also type-independent, which implies 

that at all times, within any type, the fraction of agents whose discount factor equals zero is .t  

Since t  is unobservable, agent i  knows whether she has been hit by the shock, but not 

how many agents have been hit. Moreover, t  varies over time as follows: 

,t t     

where (0,1)   is a constant and t  is an i.i.d. random variable which is uniformly distributed 

over [ , ],   with 0 min{ ,1 }.      The term t  serves an important function in the model 

by generating random price fluctuations. If t  was constant, as soon as the first agents sold in 

anticipation of the crash, the price would reveal these sales and precipitate a crash. In a noisy 

environment, by contrast, agents cannot distinguish whether a price deceleration is due to a high 

t  or the start of the crash. It is important to note that the role of preference shocks is precisely to 

generate a positive and noisy amount of sales. The role of the shock is not to make speculation a 

positive sum game by making some agents get caught in the crash. The shock never forces any 

agents to stay in the market. On the contrary, it sometimes forces agents to sell the risky asset. 

The bubble is fueled by agents who invest their endowment into the risky asset. Every 

period, agents receive 0te   units of the risk-free asset. If they do not anticipate an impending 

crash and are not hit by the preference shock, they choose to invest it into the risky asset. 
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Endowments cannot be capitalized, i.e., agents receive te  at time t  and cannot be pledge te  in 

order to borrow at earlier dates .s t  After time 0, endowment growth accelerates as follows:6 

 
if 0

if 0.

t

t t

R t
e

G t

 
 


 (4) 

Three remarks are in order. First, the assumption that te  grows at the rate G  forever shall not be 

interpreted literally. In the long run, endowment growth must eventually slow down. However, 

limits on endowment growth are not explicitly modeled because the focus of the paper is on 

endogenous crashes, where agents’ sales will burst the bubble before it starts to decelerate for 

exogenous reasons.7 Second, agents’ inability to borrow against future endowments is a crucial 

difference between this model and Tirole (1982), where agents’ borrowing ability is unlimited. 

Here, as in AB, agents are wealth constraint and an inflow of new funds fuels growth. However, 

unlike in AB, in this model new money is not ‘dumb money’. Agents invest endowments into the 

boom only if doing so is optimal. Thus, funds invested into the bubble relatively late are not any 

more likely than funds invested early to get caught in the crash. The third remark is that an 

alternative specification with a constant t  and a noisy aggregate endowment would also 

generate price fluctuations, but it would not generate fluctuations in trading volume.  

The within-period timing of shocks and actions is as follows. Agent i  starts period t  with 

nonnegative holdings ,i tb  and ,i th  of the risk-free and risky assets, respectively. The period 

proceeds in two steps. In Step 1, agent i receives te , learns whether ,i t  is zero or 1 / ,R  and, if 

( ) ,i t   observes her signal. Also in Step 1, agent i —knowing , ,i t  1
2 1{ , , },t

t tp p p
    and if 

( ) ,i t   the signal—chooses actions , , . ,( , , ).i t i t i t i ta m s   The pair , ,( , )i t i tm s
 
captures the agent’s 

asset market choices, while , [0,1]i t   captures the agent’s consumption choice. (Although 

consumption takes place in Step 2, the decision whether to consume or not depends only on the 

                                                 
6 These endowments may originate from multiple sources. One source may be labor income, which is usually only 
partially pledgeable. Regarding other sources of new funds to fuel the bubble, Kindleberger () points to the 
expansion of credit and the arrival of new investors into the market. Thus, growing endowments may reflect the 
loosening of credit constraints as the bubble grows and agents’ net worth rises. To explain the gradual arrival of new 
investors, one could imagine a world with imperfect information diffusion, where time constraints limit the number 
of markets agents can follow. News of the boom would attract new investors, who would feed the boom even 
further, attracting even more agents, and so forth. This self-reinforcing cycle would accelerate growth for some time, 
before eventually slowing down as the fraction of agents invested in the bubble approached 1.  
7 A similar issue arises in AB, where behavioral agents are assumed able to purchase a given number of shares of the 
risky asset no matter how high the price becomes, but there is also an exogenous cap on bubble duration.  
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preference shock, which is realized in Step 1.) In the asset market—modeled à la Shapley-

Shubik—agent i  bids ,i tm
 
units of the risk-free asset and offers ,i ts  shares of the risky asset for 

sale. Due to short sales constraints,  

 , ,0 i t i t tm b e     (5) 

and  

 , ,0 i t i ts h    (6) 

must hold. Agent i chooses , ,( , )i t i tm s
 
before knowing the price ,tp  which will be determined in 

Step 2 when all bids and offers are combined.8 Preference shocks and risk neutrality greatly 

simplify agent’s asset market choices.
 
Agents with , 0i t   sell everything to consume as much 

as possible in Step 2, i.e., they set , , ,( , ) (0, ).i t i t i tm s h  Agents with , 1/i t R   set 

, , ,( , ) (0, )i t i t i tm s h
 
if they expect the risky asset’s return 1 /t tp p  to fall below ;R  they invest as 

much as they can into the risky asset, setting , , ,( , ) ( ,0)i t i t i t tm s b e   if this expected return 

exceeds ,R  and are indifferent between any linear combination of these two actions in the knife-

edge case. Agent i  will come out of the asset market with asset holdings given by  

 ,
, 1 , ,

i t
i t i t i t

t

m
h h s

p      (7) 

and 

 , , , , ,i t i t t i t t i tb b e m p s      (8) 

where ,i tb  denotes agent i’s within-period, or interim, risk-free asset holdings.  

In Step 2, offers and bids are combined and the price is determined by market clearing 

,

[0,1]

1.i t

i

h di



  

     (9) 

Substituting (7) into this expression and solving for the price yields 

 ,t
t

t

M
p

S


   
 (10)  

where, for any ,t  

                                                 
8 The assumption that agents submit orders before knowing others’ orders or the price is similar to Kyle (1985), and 
also to models a la Cournot. In the jargon of financial markets, agents are placing market orders, which they know 
will be executed, but they do not know at what price.  
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         , ,

[0,1] [0,1]

               and             .t i t t i t

i i

M m di S s di
 

    (11)  

Since there is always a positive measure of preference-shock induced sellers, tS  is 

always positive and (10) is well defined. Finally, agent i  consumes a fraction , [0,1]i t 
 
of  ,i tb  

 , , , ,i t i t i tc b   (12) 

and saves the rest, so that next-period’s risk-free asset holdings , 1i tb   are given by 

  , 1 , ,1 .i t i t i tb R b      (13) 

Figure 2 summarizes within-period timing 

 

Having described market clearing, we can now fill in details about the pre-boom, boom 

and post-crash phases. But before proceeding, let us make two assumptions that will allow us to 

avoid unnecessary complications and generate price dynamics exactly as in Figure 1. The first 

assumption is that agents are not wealth constraint while 0.t   This implies that 0 1( / )t tG R R   

is indeed the correct post-crash expected price and fundamental value.9 The second assumption is 

that 1/ 1.    When this holds, it is optimal for agents to hold , 0i tb   while 0.t   In turn, 

                                                 
9 If agents were wealth constraint during the pre-boom phase, the only change with respect to Figure 1 would be a 

delay in the start of the bubble. The post-crash price would be higher than 0
1( / )t tG R R

 by a factor capturing the 

degree to which agents were wealth constraint before the boom. Thus, the fundamental part of the boom would last 
longer, but the duration of the bubble would not be affected. 

    Period 1t                                                 Period t                                               Period 1t 
 

Period  t 

 

Figure 2 — Within-period timing.  

STEP 1 

 If 
0 0

1,t t t N     type-t agents observe signal. 

 Agents receive 
t

e , learn whether 
,i t

  is zero or 1 / .R  

 Agents choose 
, , ,

( , , )
i t i t i t

m s   

STEP 2 

 Market clears: 
t

p  determined, agents receive 
, 1 ,

, .
i t i t

h b

  

 Agents consume 
, , ,

,
i t i t i t

c b   save 
, 1 ,,(1 ) .

i t i ti tb R b

    
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this has the convenient implication that, at 1,t   there is an increase in the price growth rate, but 

there is no additional ‘discrete’ jump in the price.  

With these assumptions in place, consider a pre-boom period 0,t   and let agents start 

with . 0i tb   units of the risk-free asset. Preference shocks force a mass t  of agents to sell their 

shares of the risky asset, which also amount to .t tS   Other agents use their endowments to bid 

for these shares. With . 0,i tb   we have (1 ) ,t t tM e   and thus 

   1
1 .t t tp e    (14) 

Since the expected 1 /t tp p  equals ,R  agents who are not hit by the shock find it (weakly) 

optimal to consume nothing and to invest their entire wealth into the risky asset, letting , 1 0.i tb    

Since 1/ 1,    the risky asset is valuable enough to store agents’ entire wealth.10 Agents who 

are hit by the shock consume , , ,i t i t t t i tc b e p h  
 
and save nothing, i.e, let , 1 , 1( , ) (0,0).i t i tb h    

At 1,t   endowment and price growth accelerate. For a while, the only sales are those 

forced by shocks, those who are not hit by the shock remain fully invested in the risky asset, and 

tp  is given by (14) with .t
te G  Since shocks are type-independent, in the aggregate each type 

holds , 1/n th N  shares of the risky asset, where for all 0 0{ , , 1}n t t N    and for all ,t  

, ,

{ | ( ) }

.n t i t

i i n

h h di
 

       (15) 

All N  types hold , 1/n th N  shares until the last few periods of the boom, when some begin to 

sell in anticipation of the crash. When the first 0tz   types sell at ,t  the number of shares for 

sale becomes / (1 / ),t t t tS z N z N    where a mass /tz N  of agents sell anticipating a crash 

and a mass (1 / )t tz N   of agents sell strictly because of preference shocks. Aggregate bids tM  

                                                 
10 If   was below 1 / 1,   agents who are not hit by the shock would invest a fraction / (1 ) (0,1)      of 
the endowment tR  in the risky asset and the rest in the risk free asset. This would imply pre-boom aggregate 
holdings of the risk-fee asset of (1 )(1 ) / (1 (1 ) / ).t

tb R R       Once the boom began, this wealth would 
flow into the risky asset, causing a price jump in period 1, followed by some periods where 

t
p  would grow on 

average at the rate ,R  up until the point where tb  reached zero. After that point, wealth constraints would bind and 

t
p  would grow at the average rate ,G R  as in Figure 1. As long as 

0
b  is small enough that wealth constraints 

start binding well before the bubble bursts, the assumption that 1 / 1    is innocuous; it allows us to abstract 
from inessential price dynamics without otherwise affecting bubble duration in any way.

baT    
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amount to (1 )(1 / ) ,t
t tz N G   as only agents who are not hit by the shock and are not of the 

exiting types wish to be long in the risky asset. Overall, thus, the price becomes 

   
1

1 1 .tt t
t t

z z
p G

N N


              
    (16) 

After trade, , 1n th   equals 0 for the tz  types that have sold and 1(1 / )tz N   for all other types. 

Agents hit by the shock consume the proceeds from selling the risky asset, while agents who sell 

without being hit by the shock store their wealth in the risk-free asset hold, i.e., they let , 1 0.i tb  

The likelihood that tp  reveals the exit of these tz  types depends on the relative magnitudes of   

and / .tz N  If (1 ) / (2 ),t tz N z     sales will surely be revealed, as 1(( ) 1)) ,tG     the 

lowest possible price if 0tz   exceeds 1([ / ( )(1 / )] 1) ,t
t tz N z N G      the highest possible 

price if tz  types have sold. However, if (1 ) / (2 ),t tz N z     tp  may be greater or equal than 

1(( ) 1)) ,tG     in which case the bubble will continue until period 1.t    

 If the bubble survives period t  and another 1 0tz    types sell at 1,t   the aggregate bid 

becomes 1
1 1 1(1 )(1 ( ) / ) .t

t t t tM z z N G 
      11

 On the selling side, 1 /tz N  sellers anticipate a 

crash and 1 1(1 ( ) / )t t tz z N     sellers are strictly shock-induced. Since risky-asset holdings 

across sellers average 1(1 / ) ,tz N   the total mass of shares for sale equals 

         
1

1 1
1 11 1 .t t t t

t t

z z z z
S

N N N N



 

 

               
     

Given this, and after rearranging terms, the equilibrium price can be written as 

    1
1

1 1
1

1
1 1 .

1

t

tt
t

t t t
t

z
z Np G

z z zN
N N






 


 
                

 (17)  

The likelihood that 1
1 / t

tp G 
  falls below 1(( ) 1))     now depends on ,  tz  and 1.tz   If 

1
1 / t

tp G 
  falls below this threshold, sales will be revealed, causing a crash. Otherwise, the 

bubble will last until time 2t   or later. Equation (17) can be generalized to accommodate sales 
                                                 
11 The market clearing condition is different if 

1t
z

  is negative (i.e., if some types reenter the market after selling). I 
restrict attention to 

1
0

t
z


  because reentry does not occur in any of the equilibria presented in coming sections.  
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over more than two periods.12 However, since in the equilibria analyzed later, sales burst the 

bubble in one or two periods, (17) lays all the groundwork necessary for our purposes.   

 The post-crash phase starts at time 1,T   where T  is the first period in which / t
tp G  

falls below 1(( ) 1)).     Assuming that 0t  is revealed at ,T  the expected fundamental value 

  0 1
/

t tG R R 
 also becomes known.13 From time 1T   onward, agents who are not hit by the 

shock invest a decreasing fraction   0( 1)
/

t t
R G

 
 of their endowments in the risky asset, and the 

rest in the risk-free asset. This choice is weakly optimal since, throughout the post-crash phase, 

the expected ratio 1 /t tp p  equals .R  Moreover, equality between tp  and tf  is maintained. 

3 Equilibrium  

I next define equilibrium under the restriction—to be relaxed in Section 5—of no reentry, which 

means that, once an entire type has sold in anticipation of the crash, all agents of that type stay 

out of the market until the bubble bursts. (Note that this does not preclude agents who are forced 

to sell by shocks from investing their endowments in the risky asset in later periods.)  
 

Restriction I - No Reentry:  For any i and any ,t T  if , 0,i tb   then , 0,ih    { 1, , }.t T     

The equilibrium concept is Perfect Bayesian Equilibrium (PBE), given by stragegies and 

beliefs [0,1]{ , } .i i ia    Agent i’s strategy ia  is a sequence  , ,i t t
a


 where, for all t, ,i ta  is a triplet 

, , ,( , , ).i t i t i tm s   Agent i’s belief , 0( )i t t
 
is a probability distribution over values of 0.t  Both ,i ta  

and , 0( )i t t  are contingent on information available to agent i  in Step 1 of date .t  This includes 

the discount factor , ,i t  past prices 1
2 1{ , , },t

t tp p p
    and if ( ) ,i t   the signal ( ).i  Since 

,i t  does not inform about 0,t  and all agents within a type observe the same prices and signal, 

they have the same common belief, defined as , 0 , 0( ) ( )n t i tt t   for all i  with ( ) .i n    

                                                 
12 If sales start at 0t   and , , 0

t t h
z z


  types sell at times ,, ,t t h  the price 

t h
p

  is given by (17), replacing 
1

1 1
( , , )t

t t
G z 

 
 with ( , , )t h

t h t h
G z 

 
 and 

t
z  with 

1
.

t t h
z z

 
   

13 In the equilibria presented later, prices 
1
, ,

T
p p  often reveal 

0
t  exactly. However, in some instances, this will 

hold only approximately, and a few values of 
0

t  will be consistent with prices. Nevertheless, to avoid burdening the 
reader with inessential complications, I will assume that 

0
t  is exactly revealed. Generalizing the fundamental-value 

formula to take the latter cases into account adds complications in exchange for little or no insight. 
0 0

t  
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In equilibrium, for all i, ,i ta  is optimal given agent i’s shock realization ,i t  and the belief

, 0( ),i t t  and , 0( )i t t  is consistent with the equilibrium strategy profile. To be consistent with a 

strategy profile, a belief , 0( )i t t  must assign positive probability only to values of 0t  that are not 

ruled out by strategies, given 1tp   and if ( )t i , ( ).i  The set of values of 0t  that are not ruled 

out is the support of 0,t  denoted by , 0supp ( ).i t t  Since beliefs are the same for all agents in a type, 

we can define , 0 , 0supp ( ) supp ( )n t i tt t  for all i  with ( ) .i n   To see how , 0supp ( )n t t  evolves in 

equilibrium, recall that the signal n  implies that  , 0supp ( ) max{1, ( 1)}, , .n t t n N n     

Moreover, prices 1tp 

 and strategies rule out values of 0t  as follows. If 0t  takes on the value 0 ,  

given the price history 1,tp   there are—discount-factor contingent—implied values of ,ia   for all 

i and all .t   These implied actions and the price p  can be substituted into (17) to compute the 

implied .  The value 0  is excluded from , 0supp ( )n t t  if it implies    for some .  Once an 

agent has discarded the values of 0t  that are ruled out by this process, the probabilities that 

, 0( )n t t  assigns to the values in , 0supp ( )n t t  are obtained using Bayes’ rule.  

With equilibrium beliefs embeeded in the expectations operator , ,i tE  the equilibrium 

strategy ,i ta  solves the following problem for all agents and at all times  

               , , , , , 1 , 1
, . ,

, ,, ,
( , ) max   ( , ) ,i t i t i t i t i t i t

i t i t i t
i t i tm s

V b h E c E V b h


            (18) 

subject to (5)-(8), (12), (13), and Restriction I. As previously stated, preference shocks and risk 

neutrality greatly simplify this program’s solution. Agents hit by the shock set , ,(0, ,1),i t i ta h  

i.e., sell and consume everything. Agents with , 1/i t R   set , 0.i t 
 
Depending on whether 

 1, /t ti tE p p  is above, below, or equal to ,R  they are, respectively, fully invested in the risky 

asset, fully invested in the risk-free asset, or indifferent between any mix of the two assets. 

 

[The following Sections 4 and 5 are incomplete/under revision. The Lemmas and Propositions 

that  follow will  continue  to  hold,  and  convey  essentially  the  same message, when  revised. 

However, to incorporate features of the environment, many details need to be updated.]  
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4 Equilibria with Bubbles: Basic Analysis 

I begin the analysis in subsection 4.1 by considering the case where (1 ) / (2 1).N     

This is such a low level of noise that the price is certain to reveal sales as soon as one type

( 1)tz   exits the market. In this effectively noiseless environment, I examine the possibility of 

bubbly equilibria with simple trigger strategies akin to those analyzed by AB, where agents 

attempt to ride the bubble for * 0   periods. Specifically, equilibrium strategies dictate that—

unless the preference shock forces them to sell or the bubble bursts first—agent i shall be fully 

invested in the risky asset until selling out at ( ) *.t i    Although noise cannot hide any sales, 

the discreteness of the model makes it possible for a positive mass 1/ N  of agents to sell 

simultaneously before the crash. The price will reveal these sales and precipitate a crash, but by 

then the first sellers will already be out of the market. Since there is a nonzero probability of 

being among these first sellers, as long as the bubble grows fast enough, it is optimal to try to 

ride it.14 Not surprisingly, there is a positive relationship between the speed at which the bubble 

grows, captured by / ,G R  and bubble duration *,  and there is also a minimum threshold level 

  below which there can be no bubbles without noise. In Proposition 1, I derive a parameter 

restriction such that, if (1 ) / (2 1),N     the only equilibrium is one where agents sell 

immediately upon observing the signal. Specifically, if / ,e G R     where the threshold   

depends on   and ,N  only * 0   is an equilibrium.  

In subsection 4.2, I increase the level of   so that noise can hide sales of one type, but 

not two. For levels of noise in this range, prices can be categorized as high, medium, or low. 

High prices reveal that no types have left the market, medium prices are consistent with either no 

sales or with sales by one type, and low prices reveal for sure that some types have left the 

market. I focus on strategies that are Markovian, in the sense that they condition actions—

besides the preference shock—exclusively on the last price observed, not the entire price history. 

Even with this minimal amount of noise, there exist parameters such that bubbles of arbitrary 

length can arise, even for levels of /G R  below the threshold level .  
 

                                                 
14 In continuous time, sales by an arbitrarily small mass of agents would be revealed by the price. This would drive 
the probability of being one of the first sellers to zero, and thus riding the bubble would not be optimal. To avoid 
this, AB assume that there is an interval of time during which shares are gradually sold without affecting the price, 
which grows at the same rate as before sales began, and reacts only when total sales reach a threshold (0,1).    
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4.1 The Case where Noise Can Hide No Sales  

Let (1 ) / (2 1),N     so that sales are always detected, as 
1(( ) 1)) ,tG     the lowest 

possible price before any type has left the market exceeds 1([1/ ( )(1 1/ )] 1) ,tN N G       the 

highest possible price if one type has sold. Consider the following strategies: 
 

 

Strategy Profile 1 — For any [0,1],i  agent i follows    , , , ,, ,i t i t i t i tt t
a m s 

 


 
 given by: 

 If , 0,i t 
          , ,(0, ,1)i t i ta h  for any t. 

 

 If , 1/ ,i t R 
     , 0i t 

 
for all t, and the choice of , ,( , ),i t i tm s  is as follows:  

 
o If ,t T  

                                    ,
, ,

,

( ,0) if  ( ) *              
( , )

(0, ) if  ( ) *,                                    
i t t

i t i t
i t

b e t i
m s

h t i

 
 

  
   

 (19) 

                            with * 0.    

o If 1,t T     0( 1)

, ,( , ) ( / ,0).
t t

i t i t tm s R G e
    

 

In words, the strategy dictates the following: When hit by the shock, agent i shall sell all 

her assets and consume the proceeds. When not hit by the shock, she shall not consume and 

allocate her savings as follows. Before the crash, invest as much as possible into the risky asset if 

less than *  periods have passed since observing the signal, and sell all shares of the risky asset 

at time ( ) *.i   After the crash, she shall invest a fraction   0( 1)
/

t t
R G

 
of her endowment into 

the risky asset and the rest into the risk-free asset.   

If all agents follow these strategies, in equilibrium, type- 0t  agents sell at 0 *,t   and are 

the only agents who succeed in riding the bubble and selling before the crash, as 
0 *tp   reveals 

their sales, and the crash happens at time 01 * 1.T t       

In Proposition 1, I show that, if /e G R     (where (1 1 4 ) / 2e e     ), agents 

must sell as soon as they observe the signal. That is, agents are willing to follow (19) if and only 

if * 0.  15 Inequality /e G R   ensures that agents do not sell before observing the signal, 

while inequality /G R    ensures that they sell as soon as they observe it. If / ,G R    waiting 

                                                 
15  Technically, *    is also an equilibrium, but it is not of interest, since the assumption of perpetually fast 
endowment growth shall not be taken literally. 
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for * 1   periods after observing the signal cannot be optimal, because the bubble is not 

growing fast enough to compensate for potential losses in the event of a crash.  
 

Proposition 1 If / ,e G R     where (1 1 4 ) / 2,e e      Strategy Profile 1 and its 

implied beliefs constitute an equilibrium if and only if * 0.    
 

Proof Because agents who are hit by the shock do not value the future, they always find it 

optimal to sell and consume everything they own. Keeping this in mind, henceforth, the proof 

will eximne the optimality of decisions for agents who are not hit by the shock. 

Pre-boom and post-crash, for any parameters and * 0,   agents are willing to follow 

(19). While 0,t   they are indifferent between any holdings of the risky asset, and thus, being 

fully invested in the risky asset by letting , , ,( , ) ( ,0)i t i t i t tm s b e   is weakly optimal. Similarly, in 

post-crash periods 1,t T   the risky and riskless assets are again perfect substitutes, and thus, a

0( 1)
, ,( , ) (( / ) ,0)t t

i t i t tm s R G e 
 
is also weakly optimal. For boom periods {1, , },t T   the proof 

has two parts. First, I show that, if / ,e G R   there is an equilibrium with strategies given by 

(19) and * 0.   Second, I show that, if / ,G R    there are no equilibria with strategies given 

by (19) and * 1.    

For the first part, note that, in equilibrium with * 0,   type-n agents (i) find it optimal to 

sell in period ,n  and (ii) find it optimal not to sell before period .n  To see why (i) holds, note 

that, at time  ( *),n n    a type- n  agent can infer that 0t n  from the fact that the bubble has 

not burst. She also knows that other type- n  agents are selling, and that np  will reveal these 

sales, causing a crash at 1.n   Clearly, selling is optimal since the expected time- n  price nG  

exceeds the discounted post-crash price 1nG   that she will get if she waits. Next, to see why 

/e G R   implies (ii), consider a type-n agent at .t n  If 0,t   she has no reason to sell, since 

0t  cannot be ,t  and a crash at 1t   is impossible. If 1,t   0t  could be ,t  and thus the bubble 

could burst at 1.t   With , 0supp ( )n t t  given by { | },t    the probability of a crash at 1t   is 

, ( ) 1 .n t t e     The agent can sell at a price ,tG  or she can wait, in which case with probability 

e   she will be able to sell at 1t   for a higher (discounted) price 1 /tG R  and with probability 
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1 e   she will obtain the post-crash price. Even if the post-crash price is zero, if 1 / ,e G R  

waiting is optimal. Hence, /e G R   suffices to rule out preemptive sales while .t n   

For the second part (i.e., showing that there are no equilibria with * 1   if / ),G R    

suppose, by means of contradiction, that there is such an equilibrium although / .G R    In any 

equilibrium with * 1,   type-n agents must be willing to wait at all times *,t n    including at 

* 1.t n     If * 1t n     and the bubble has not burst, type-n agents know that their type 

was either first or second to observe the signal, i.e., , 0supp ( ) { 1, }.n t t n n   By Bayes’ rule, 

, ( 1) 1/ (1 )n t n e    
 
and , ( ) / (1 ).n t n e e    

 
In this situation, a type-n agent’s sell-or-wait 

trade-off is as follows. Selling preemptively at t  yields * 1,nG    while waiting yields the 

(discounted) post-crash price 2 * 1nG R   if 0 1,t n   and * /nG R  if 0 .t n  In sum, deviating 

from (19) by selling preemptively at t  is optimal if 

( * 1)
1

1
1 1

G e G

e R e R

 

 

  

 

     
.    (20) 

Since the right hand side is decreasing in *,  if (20) holds for * 1,   it also does for 

* 1  . In Appendix A, I show that 21 ( / ) /e G R e G R       holds if 1 / ,G R    where 

(1 1 4 ) / 2.e e      Thus, there are no equilibria with * 1   and / .G R    Q.E.D. 
 

4.2 The Case where Noise Can Hide One Sale 

 To fix ideas and lay groundwork, let us provide details on the case where noise can hide 

sales by one type, but not two. Given (14) and (16), if (1 ) / (2 1),N    noise may hide sales 

by one type, but it cannot hide simultaneous sales by two types if (1 ) / ( 1).N     The price 

must also reveal sales if the second type sells after the first. This will be the case if 

1 1 1
,

1/ ( 2)

N

N N

   
   
           

 

since this inequality implies that the lowest possible price when nobody has sold is greater than 

the highest possible price given by (17) with 1 1.t tz z    Solving for ,  we find that if 

 
2

1 1
1 .

2 2 2R

N
N N

N N N
                         
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that the price will fall below (1 ) / ( )tG        revealing the sales, and a probability that the 

price will remain above  (1 ) / ( )tG        

Maintaining the restriction that / ,e G R     which precludes bubbles without noise, I 

now increase   and derive conditions under which bubbles arise. Despite restrictions I-IV, 

when 1/ ,N   multiple equilibria appear. Nevertheless, since all equilibria with long bubbles 

share certain features, the analysis points to a set of conditions that are necessary for bubbles. In 

bubbly equilibria, the higher prices are, the longer are agents willing to postpone their sales after 

observing the signal. Since different prices elicit different behavior, price fluctuations reveal 

information about the value of 0 ,t  i.e., there is gradual informational leakage, as in Kai and 

Conlon (2008). For intstance, a recovery after a price slowdown reveals that 0t  exceeds a certain 

threshold, since the slowdown would have triggered more sales if 0t  was lower. By contrast, a 

string of consecutive high prices is consistent with 0t  being quite low, in which case several 

types would be awaiting the next slowdown, ready to sell. Confidence in the bubble is thus 

strongest after a recovery and weakest when, after many high prices, there is a slowdown.16 To 

support bubbles in equilibrium, agents must be willing to postpone sales for some time after 

observing their signal. During this time, it must be optimal for agents to wait even if they see a 

price slowdown. Roughly, sufficient conditions to rule out such preemptive sales can be stated as 

follows. First, there must be enough noise to imply a sizable probability that, when the first 

agents sell, the price does not reveal the sales. Second, agents who sell preemptively during a 

slowdown must forgo a large profit if the bubble continues to grow after they have sold. This 

forgone profit is large if price slowdowns are not too frequent and bubble growth is fast enough. 

To make these ideas precise, consider the case where 1/ 2 2 / ,N N   so that noise can 

hide sales by one type, but not two.17 A price tp  can be in one of three categories, which I will 

                                                 
16 This is similar to the version of AB with exogenous price drops or sunspots, where recoveries after price drops 
also reveal information, and multiple equilibria are inevitable since price drops may trigger sales or be ignored. 
However, unlike in AB, here price drops can be due to noise or sales, and agents take this into account in their 
inference. Furthermore, because time is discrete in this model, if agents exit the market and reenter when they see 
that prices recover, they miss out on a nontrivial amount of profits.   
17 Since, as previously mentioned, within-period timing assumptions are plausible only if periods are relatively brief, 
this is a restrictive assumption. However, analyzing this case is useful for expositional purposes since it is more 
tractable than the case where noise may hide sales by multiple types. (The latter is available upon request.)  
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refer to as high, medium and low, respectively. High prices exceed ( 1/ ),tG N    and thus 

reveal that nobody has sold. Low prices are under ,tG   and thus reveal that sales have 

begun. Medium prices are between these two thresholds, and are therefore consistent with 

nobody having sold and with one type having sold. Before sales begin ( 1),tH   tp  is high with 

probability   

 
1/

2

N


  (21) 

and medium with probability 1 .  With one type out of the market ( 1 1/ ),tH N   tp  is low 

with probability   and medium with probability 1 .  If at least two types sell, tp  must be low. 

Also note that, since 1/ 2 2 / ,N N    (½,1).  

Following restrictions I-IV, type-n agents condition their sell-or-wait choice at time t  on 

time since observing the signal, i.e., on ,t n  and on whether the last price 1tp   was high 

1( ( ) 0)tc p    or medium 1( ( ) 1)tc p   . Specifically, agents’ plans are described by: 

 

Strategy Profile 2 — For any 1,n   the strategy of a type-n agent is the following: 
 

 For all 1,t   hold , 1.n th   

 For all {2, , },t T   let   

,

1 if  min{ *( ), **( )} 

0 if  min{ *( ), **( )},n t

t t n t n
h

t t n t n


  

    (22) 

where 1*( ) min{ | *   ( ) 1},tt n t t n c p      1**( ) min{ | **  ( ) 0},tt n t t n c p          

and ** * 0.    

 For all 1,t T   maintain , , 1.n t n th h         
 

In words, type-n agents hold the maximum long position before observing the signal (i.e., 

while ).t n  After observing the signal, they wait for *  periods until *,t n    then sell if 

* 1np    is medium and wait if it is high.18 They continue applying this sell-if-medium/wait-if-

high rule for another d  periods, where ** *.d     In the event that prices remain high for all 

                                                 
18 In the special case where * 1,n    the sell-if-medium/wait-if-high rule does not apply, as 

0
( )c p  is not defined. 

In this case, type-1 agents do not sell at 1;t   they begin to follow the sell-if-medium/wait-if-high at time 2 instead. 
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{ * 1, , ** 1},t n n       they sell at **,n   even though ** 1np    is high. Finally, agents 

do not reenter the market after selling, and nobody does anything after time .T   
 

tp                                                                           tG  

 

              

tR      tG   

 
 

    0 0 0 00                                             1             *     **                         t t t N t t t       
 

Figure 4 — As soon as 0t  is realized, tp  and tf  begin to diverge. Signals are observed from 0t  

to 0 1.t N   (Bars above these periods, which decrease in height, denote conditional 

probabilities for the signal 0 1.)n t N    In this example, since * 1,N    sales cannot begin 

until after all signals are observed. Also, ** * 6.d      For the depicted realizations of t , 

the bubble bursts as late as possible. Since tp  is high 0 0{ * 1, , ** 1},t t t        sales 

begin at time 0 **.t   Since 
0 **tp   is medium, types 0 01, , 7t t   sell at 0 ** 1,T t     

causing a crash. If p  had been medium for some 0 0{ * 1, , ** 2}t t        sales would 

have started at time 1,   before 0 **.t    

 

Depending on t , sales can begin as soon as period 0 *,t   and as late as 0 **.t   The 

number of types that manage to sell before the crash ranges from 1 to 2d   and also depends on 

the realizations of t  in periods leading up to the crash. Specifically, if 
0 * 1tp    is medium, type 

0t  sells at 0 *.t   If 
0 *tp   is low, no one else sells, whereas if it is medium, type 0 1t   sells at 

0 * 1.t    If 
0 * 1tp    is high, the next s  prices (with {0,1, , 1})s d   are high and 

0 *t sp    is 

medium, 2s   types sell at 0 * .t s   And if for all { * 1, , ** 1},t n n       prices remain 

high, type 0t  sells at 0 **.t   Next, if 
0 **tp   is low, no more types sell, but if 

0 **tp   is 

medium—as shown above in Figure 4—another 1d   types also sell before the crash. As 

 0 ** 1T t     

     0 01 ( 1)t t t
tf G R    
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previously discussed, behavioral agents can only buy a mass 1   of shares.  Thus, 2d   types 

can sell before the crash only if 2 .d N   I assume that this holds. 

To investigate the model’s ability to generate long bubbles, note that equilibrium bubble 

duration 0T t  is at least * 1   periods. Thus, the task at hand is to find conditions under which 

equilibria with large *  (and hence large ** ) can be supported. In any equilibrium, agents 

must be willing to sell if and only if (22) stipulates it. As discussed before, pre-boom ( 0t  ) and 

post-crash ( 1)t T  , all types find it (weakly) optimal to follow equilibrium strategies. And at 

1,t   they find it optimal not to sell, since nobody is selling and they can reap gains postponing 

their sales by at least one period. The analysis of agents’ choices while 2, ,t T   is more 

complex, and I therefore divide it into four parts: In Lemma 1, I state conditions under which 

type-n agents choose to sell if **t n    and 1tp   is high. In Lemma 2, conditions such that 

they choose to wait if **t n    and 1tp   is high, and in Lemmas 3 and 4, respectively, 

conditions such that they are willing to sell if *t n    and 1tp   is medium, and wait if 

*t n    and 1tp   is medium. In Proposition 2, I combine the Lemmas into a set of conditions 

that are necessary to support equilibria with large *  and **.  Finally, in Proposition 3, I show 

that the conditions in Lemma 2 are compatible with each other and with the no-bubbles-without-

noise restriction / .e G R     

  Before plunging into the Lemmas, I will provide a brief preview of upcoming results. 

Making agents sell is easy. If a type-n agent knows that other type-n agents are selling, there is at 

least a probability   that the bubble will burst next period. Given this, Lemmas 1 and 3 require 

very little to make agents sell when they are supposed to. It is more difficult to make agents wait 

when they are supposed to wait, and therefore, Lemmas 2 and 4 need to impose some restrictions 

to rule out preemptive sales. In Lemma 2, it is only possible to support large **  if /G R  is 

above (or not far below) (1 ) / (1 ).e e       In Lemma 4, it is only possible to support large 

*  if / / .e G R    Under these conditions, agents are willing to wait because, if they sell early 

and the bubble continues to grow, they forgo large profits. To see exactly how these conditions 

affect agents’ choices, let us proceed to the Lemmas.  
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Lemma 1 — Let 1n   be an arbitrary type. If /G R   , 1/ (1 ),e     2 ,d N   ** 1,   

**t n    and 1tp   is high, type-n agents find it optimal to sell at time .t   
 

Proof — Consider a type-n agent at **,t n    with ** 1   and high 1.tp   At this point, she 

knows that her type is first, i.e., that 0 .t n  (If 1,n   she has known that 0t n  since period 1; if 

1,n   she learnt that 0t n  from the fact that ** 1np    was high.) Since other type- 0t  agents are 

selling at ,t  tp  will be low with probability   and medium with probability 1 .  An individual 

type- 0t  agent can thus sell along with the other type- 0t  agents at an expected price 0 **,tG   or 

wait. If she waits, with probability   she will earn the discounted post-crash price 

0 01 **( / )t tG R R    and with probability 1   she will sell at 1t   with 1d   other types at an 

expected price that—since 2d N  —equals 0 ** 1.tG    Thus, selling is optimal if 

( ** 1)

1 (1 ) .
G G

R R



 
 

    
 

                       (23) 

If 1/ (1 ),e     (23) is the same as (20). Thus, since 1/ (1 ),e     /G R    and ** 1,   

type-n agents are willing to sell. Q.E.D. 
 

In Lemma 1, I have ignored the case where ** 0.   Analyzing this case is not difficult, 

but it is tedious and, since our focus in on long bubbles, uninteresting. Similarly, assuming that 

1/ (1 )e     simplifies the proof without actually imposing a binding restriction on 

parameters. This is because, as we will see in Proposition 3, to support long bubbles   must be 

above (or just a little bit below) a threshold 2(1 ) / (1 ).e e e        Since this threshold 

exceeds 1/ (1 )e   for any ,  the parameter values of interest always satisfy 1/ (1 ).e      

Lemma 1 establishes that, under general conditions, type-n agents will sell at **n   

after a high ** 1.np    At this point, they know that they were the first to observe the signal and 

that they have successfully ridden the bubble. But how did they arrive here? In earlier periods 

**n j   (with 1),j   they did not know that they were first. Following (22) and waiting was 

risky, since 0t  could have been ,n j  in which case type n j  would have sold at ** ,n j   

causing a crash with probability .  Under what conditions was it optimal for them to take this 

risk? While I answer this fully in Lemma 2, the key condition ruling out preemptive sales can be 
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understood by examining Figure 4 and focusing on period 0 **,t   which is preceded by 1d   

high prices 
0 0* 1 ** 1, , .t tp p      As Figure 4 shows, in this situation, type- 0t  agents sell and 

others wait. To see why others wait, consider the sell-or-wait trade-off of type 0 1,t   i.e., the 

second type to observe the signal.19 At 0 **,t t    type- 0 1t   agents understand that, with 

probability 1/ (1 ),e   they were second to observe the signal and the first type will sell at ,t  

causing a crash with probability .  But they also assign a probability / (1 )e e    to the 

possibility that they were first, in which case nobody will sell at t  and a crash at 1t   is 

impossible. In sum, selling at t yields ,tG  and waiting yields the post-cash price 0 1( / )t tG R R  

with probability / (1 )e    and at 1tG   with probability 1 / (1 ).e     Waiting is optimal if 

 
( ** 1)

1
1 (1 )

1 1

G G e G

e R R e R

 

  
  

 

           
.      (24) 

If / (1 ) / (1 ),G R e e        (24) holds for any **,  no matter how large. In other words, 

for /G R  above this threshold, type- 0 1t   agents are willing to wait even if the post-crash price 

is zero. If /G R  is below (1 ) / (1 ),e e       waiting is optimal only if the fraction of the 

price lost in the crash is not too large. Specifically, waiting is optimal only if 

                     
 

ln
(1 ) (1 ) /

** 1.
ln /

e e G R

G R

 





 

 
          (25) 

I have derived (24) for the specific situation of type- 0 1t   agents at 0 **t   after 1d   

high prices. However, in the proof of Lemma 2, I show that, of all possible situations with 

**t n    and high 1,tp   this is precisely the one where type-n agents are most tempted to sell.  
 

Lemma 2 — Suppose that /e G R  , 2 ,d N   **t n    and let 1tp   be high. If 

/ (1 ) / (1 ),G R e e        type-n agents find it optimal not to sell at time ,t  for any ** 0.   

If / (1 ) / (1 ),G R e e        type-n agents choose not to sell at time ,t  only if  (25) holds. 
 

                                                 
19 Note that the trade-off that type-

0
t  agents face at 

0
** 1,t    with high prices for the last 1d   periods, is 

identical to the one faced by type-
0

1t   agents at 
0

**,t   also with high prices for the last 1d   periods. In both 
cases, the support of 

0
t  has two values; agents know that they were either be first or second to observe the signal. 
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Proof — See Appendix B. 
 

 While I refer the reader to Appendix B for analysis of all possible cases with **t n    

and high 1,tp   the reason why the situation captured by (24) is the one where preemptive selling 

(after a high price) is most tempting can be sketched as follows. Consider type- 0 2t   agents at 

time 0 **t   after 1d   high prices. Given their information, they believe they could have been 

first, second, or third to observe the signal. Thus, for them, the crash probability is 

2/ (1 )e e      (  times the probability of being third), clearly below / (1 ),e    the crash 

probability in (24). By the same logic, for types 0 2t   and higher, the crash probability is even 

lower. Moreover, in many cases with **t n    and high 1,tp   type-n agents have no incentive 

to sell, since the crash probability is nil. For instance, if t sp   is medium for some 

{2, , 1},s d   all types know with certainty that nobody will sell at ,t  and hence that a crash 

at 1t   is impossible. This is due to the fact that, if 0t  was **,t   type- 0t  agents would have 

sold at 1t s   after the medium .t sp   But then, 1tp   could not possibly be high. 

From (25), we can analyze comparative statics for maximum bubble duration **.  Not 

surprisingly, **  falls as   increases, since the greater ,  the greater the likelihood of lower 

values of 0t  relative to higher values. The effect of   on **  is also negative, since the greater 

,  the more likely it is that, if one type sells at ,t  the price reveals the sale. 20 The effect of /G R  

is not as straightforward, because increases in /G R  increase profits if the bubble does not burst, 

but also losses if it does burst. In general, the direction of the effect depends on parameter values. 

However, the parameter values of interest are those that allow long bubbles to arise, i.e., values 

of /G R  slightly below (1 ) / (1 ).e e       In this range, **  is increasing in / .G R   

In sum, by Lemma 2, equilibria with large **  exist only if /G R  is above, or not far 

below, (1 ) / (1 ),e e       and if 2 .d N   The latter condition, which is needed to ensure 

that behavioral agents can buy the ( 2) /d N  shares sold by rational agents, can only hold if   

                                                 
20 These comparative statics resemble those in AB (abstracting from AB’s exogenous cap on bubble duration). For 
some parameter values, there is no endogenous upper bound on bubble duration. For other values, there is a finite 
endogenous bubble duration, which is increasing in the rate of growth of the bubble and decreasing in   (  has the 
same meaning in AB and here). The fact that, in this model, **  is decreasing in   corresponds loosely to the fact 
that, in AB, bubble duration is increasing in behavioral absorption capacity. Here, the higher ,  (and hence, the 
lower  ) the more agents can sell unnoticed. 
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*  is not too far below **.  To investigate what values of *  can arise in equilibrium, in 

Lemmas 3 and 4, I study sell-or-wait tradeoffs after medium prices.  

Lemma 3 is fairly straightforward. In Lemma 1, type-n agents sold at **n   with high 

** 1np    knowing that they were first to observe the signal, and the only ones selling. Thus, the 

crash probability was .  By contrast, in Lemma 3, type-n agents sell at *n   after medium 

* 1,np    in general not knowing whether they were first to observe the signal or not. Besides their 

own type, others could also be selling, and this raises the crash probability above .  Agents are 

thus more inclined to sell after medium prices than after high prices, which implies that the 

conditions that sufficed to induce sales in Lemma 1 also suffice in Lemma 3. 
 

Lemma 3 — If 1/ (1 ),e     2 ,d N   / ,G R   * 0   and * 2,n    type-n agents are 

willing to sell at time *t n    after a medium price 1.tp   
 

Proof — First consider the case with 2n   and *.t n    In Lemma 1, type-n agents sell 

knowing that 0 .t n  Here, since 1tp   is medium, they sell without knowing whether 0t n  or 

0 .t n 21 If 0 ,t n  the bubble will burst at 1t   with probability .  And if 0 ,t n  two or more 

types will sell at ,t  causing a crash at 1.t   The probability of a crash at 1t   in this case is thus 

above .  This makes incentives to sell stronger at *n   with medium * 1np    than at **n   

with high ** 1.np    Since 1(1 )e      and /G R    suffice to make agents sell in the latter 

case, they also suffice in the former.  

 Continuing with 2,n   if *t n    and 1tp   is medium, type-n agents sell at ,t  since 

they know that at least two types ( n  and 1n  ) will sell at ,t  which ensures a crash at  1.t  22  

Finally, let 1.n   If * 0   and (1 *) 1p    is medium, type-1 agents sell at 1 *,t    

knowing that they are the only type selling. By Lemma 1, selling is optimal because 

1/ (1 )e    , / ,G R    and * 1.   If * 0   and (1 *) 1p    is high (or if * 0),   type-1 agents 

                                                 
21 If 2n   and 

1t
p

  is medium, type-n agents cannot rule out the possibility that 
0

1.t n   This is true regardless of 
whether 

2t
p

  is high or medium. It also holds if 
2

( )
t

c p
  is not defined, i.e., if 2t   with 2n   and * 0.   Thus, 

, 0
supp ( )

n t
t  has at least two elements { 1, }.n n  In may have even more, since, if 

1t
p

  is the first medium price after 
2k   consecutive high prices, 

, 0
supp ( )

n t
t  is given by { , , }.n k n   

22 Type-n agents find themselves in this situation if 
* 1n

p    happens to be high. 
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sell at 1 *,t    as soon as 1tp   is medium. In these cases, selling is optimal because two or 

more types are selling and a crash at 1t   is certain. Q.E.D. 
 

The link between Lemmas 3 and 4 is akin to the one between Lemmas 1 and 2. In 

Lemma 3, after a medium price, some types sell, while others—who observed the signal later—

wait. Lemma 4 examines under what conditions the latter find it optimal to wait despite a sizable 

risk of getting caught in the crash. Again, the Lemma’s proof is in Appendix B, but I will sketch 

the main argument here with the help of Figure 4. Consider type 0 2n t d    at 0 ** 1.t t     

(Note that 0 ** 1 * 1,t t n        i.e., type n is the lowest among the types who stay in the 

market at .)t  After 1d   high prices, type 0t  sold at 1,t   1tp   is medium, and now 1d   more 

types 0 01, , 1t t d    will sell at ,t  while types n and higher wait. Clearly, type-n agents 

would not wait if they knew 0.t  But given their information, they believe that there are 3d   

possible values of 0 ,t  ( 2), , .n d n    They thus assign a probability ( 2) ( 2)/ (1 )d de e       

to the possibility of being ‘first in line’, i.e., to 0 .t n  Selling in this case would mean forgoing a 

sizable expected return .dW  If 0 ,t n  for the next d  periods, with probability 1 ,  type-n 

agents will sell and with probability ,  the bubble will continue to grow. Overall, the return dW  

(see appendix B for full details) is given by 

      dW 
  1 1/ 1

(1 ) .
/ 1

d dG RG G

R G R R


 



           
           (26) 

If / ,G R e   as d  increases, dW  grows faster than ( 2) ( 2)/ (1 )d de e       falls, and thus 

            
( 2)

( 2)
1

1

d

dd

e
W

e





 

 
 

 (27) 

holds for large .d  In other words, if / ,G R e   there exist values of d  for which dW  is so 

large that type-n agents would be willing to wait at t, even if the price fell to zero for all 0 .t n  

In a second part of the proof, I show that, of all situations where the last price is medium 

and less than *  periods have passed since observing the signal, the one discussed above is the 

most critical one, in the sense that preemptive sales are most tempting. This is for two reasons. 

First, if there are less than 1d   consecutive high prices leading up to the medium 1,tp   type-n 
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agents can rule out some of the earlier values of 0 ,t  which makes 0t n  relatively more likely. 

To see the second reason, consider type 1n   at time t. Just like for type n, for 1,n   the support 

of 0t  at t  contains 2d   ‘bad’ values with 0 .t n  But for type 1,n   the support has two ‘good’ 

values, 0t n  and 0 1,t n   with expected return dW  or higher. Type 1n   is thus less tempted 

to sell than type .n  By the same token, types 2n   and higher are less tempted than type 1.n    
 

Lemma 4 — Let *,t n    and let 1tp   be medium. If /G R e   and 2 ,d N   there is a 

threshold 0d   such that if ,d d  type-n agents find it optimal not to sell at time t.  
 

Proof — See Appendix B. 
 

To recapitulate, in Proposition 2, I combine Lemmas 1-4 to obtain sufficient conditions to 

support bubbles in equilibrium. 
 

Proposition 2  — Suppose that 1/ (1 )e     and that / / .e G R      Then: 

4.1 If (1 ) / (1 ) / ,e e G R        there exists a threshold {1,2,3,...}d  , such that any 

( *, **)    with * 0,   ** 1,   d d  and 2d N   can be supported in equilibrium.  

4.2 If (1 ) / (1 ) / ,e e G R        there exists a threshold {1,2,3,...},d   such that any 

( **, *)   with * 0,  1 ** ln{ / [(1 ) (1 ) / ]} / ln( / ) 1,e e G R G R            d d  

and 2d N   can be supported in equilibrium.   
 

Proof — Start with (2.1). Since 1/ (1 ),e     2 ,d N   /G R    and * 1,   by Lemma 1, 

type-n agents are willing to sell at **n   with high ** 1.np    And since 1/ (1 ),e     

/G R    2 ,d N   and * 0,   by Lemma 3, they are willing to sell at * 2t n     with 

medium 1.tp   By Lemma 2, since / / ,e G R    (1 ) / (1 ) /e e G R        and 2 ,d N   

type-n agents are willing to wait at **t n    with high 1tp  . By Lemma 4, since 

/ / ,e G R    and 2 ,d N   0d   exists such that, if ,d d  type-n agents are willing to 

wait at *t n    with medium 1tp  .  

To prove (2.2), invoke Lemmas 1, 3 and 4 exactly as before. Then, by Lemma 2, since 

/ (1 ) / (1 ),G R e e        type-n agents are willing not to sell at **t n    with high 1tp   

only for ** ln{ / [(1 ) (1 ) / ]} / ln( / ) 1.e e G R G R           Q.E.D. 
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In sum, when noise cannot even hide sales by one type, Proposition 1 establishes that, if 

/ ,e G R     the only equilibrium (under strategic restrictions I-IV) has agents selling as soon 

as they observe the signal. And when there is enough noise to hide sales by one type, but not 

more, Proposition 2 establishes that arbitrarily long bubbles (with ** *,d     2 ,d N   and 

d d ) can be supported if / / ,e G R      1/ (1 )e     and (1 ) / (1 ) / .e e G R        

In Proposition 3, I show that all these conditions are compatible.23   
 

Proposition 3 — There exists a nonempty region of the parameter space where / ,e G R     

1/ (1 ),e      (1 ) / (1 ) /e e G R        and / / .e G R    
 

Proof — In Figure 5, I plot all restrictions in a diagram with   on the horizontal and /G R  on 

the vertical axis. The pairs ( , / )G R  of interest lie in the interior of the rectangle defined by 

1/ (1 ) 1e      and / ,e G R     and above the graphs of the functions / /G R e   and 

/ (1 ) / (1 ).G R e e        For 1[(1 ) ,1],e      both functions are continuous, /e   is 

strictly decreasing and (1 ) / (1 )e e       strictly increasing in .  They intersect at the point 

( ,[ / ] )I IG R , where 2(1 ) / (1 )I e e e          and 2[ / ] (1 ) / (1 ).IG R e e e e          For 

any 0,   ( ,[ / ] )I IG R  is in the interior of the rectangle, as I  is clearly between 1/ (1 )e   

and 1, [ / ]IG R  is clearly above ,e  and, as I show in Appendix C, [ / ] .IG R    Since 

( ,[ / ] )I IG R  is in the interior of the rectangle, there exists a region in the ( , / )G R  plane (the 

shaded area in Figure 5), where all parameter restrictions hold. Q.E.D.  
 

For any 0,   the region where all parameter restrictions are satisfied—the shaded area 

in Figure 5—is delimited by one straight side and two curved sides.24 
   

                                                 
23 Here I focus on the first part of Proposition 2 and ignore the second, by which, if  / (1 ) / (1 ),G R e e        

**  less than ln{ / [(1 ) (1 ) / ]} / ln( / ) 1e e G R G R         can be supported. Since the focus of the analysis 
is on long bubbles, and the upper bound on **  is small unless (1 ) (1 ) / 0,e e G R         considering the 
case where / (1 ) / (1 )G R e e        in Proposition 3 would add more complication than insight.  
24 A few algrebra steps suffice to show that / 1 / (1 )e e     and that (1 )( 1) / 1,e       where /e   and 

(1 )( 1) /e      are, respectively, the values of   for which the graphs of the functions / /G R e   and 

/ (1 ) / (1 )G R e e        cross the /G R    line. 
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Figure 5 — Compatibility of Parameter Restrictions from Propositions 1 and 2. 

 

Having shown that there exist parameters for which no bubbles arise without noise, but 

long bubbles arise if noise can hide one sale, we can now construct bubbly equilibria as follows. 

Pick a pair ( , / )G R  inside the shaded area above.25 Pick some large **,  and let 

* ** ,d    where d  is the smallest integer for which (27) holds. Finally, let N  be an integer 

above ( 2) / ,d   and set 1/ (2 ).N   More concretely, consider the following examples:  
 

Numerical Example 1 — Let 0.001,   implying 1.619.   Set 0.75   and / 1.618.G R   

Since / (1 ) / (1 ) 1.6005,G R e e         / ,G R e   and / ,G R    ( , / )G R  lies inside 

the shaded area in Figure 5. Set (arbitrarily) ** 56.   Since (27) holds for 6,d   let * 50.   

Finally, if 1/ 2   and 40,  (6 2) .N N    It is implied that 1/ (2 ) 1/ 60.N   ▄ 

 

To illustrate this example in more detail, in Table 1, I track agents’ beliefs and expected 

returns in the last few periods of a bubble with ( *, **) (50,56).    To fix ideas, let 0 50.t   As 

in Figure 4, I assume realizations of noise for which the bubble bursts as late as possible. 

                                                 
25 Technically, there are no restrictions on .  But intuition suggests that it should be relatively small. Specifically, it 
would seem implausible to have a large value of N  (representing very disperse opinions about 

0
t ) unless the 

expected 
0
,t  given by 1 / (1 ),e   was also relatively large.  

(1 ) / (1 )e e
       
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Specifically, after a medium 95,p  prices remain high for ten periods 96, ,105.  Type 50 sells at 

time 0 56 106,t    106p  is medium, types 51, ,57  sell in period 107,  107p  is low, causing a 

crash at time 108.  
 

Numerical Example 2 — Maintain 0.001,   0.75,   40,N   1/ 2   and 1/ 60.   But 

let 0.001 0.001/ (1 ) / (1 )G R e e        for some small 0,   so that ( , / )G R  lies just below 

Figure 4’s shaded area. Then, equilibria with ( *, **)   can be supported if * 0,   

** ln{0.75 / } / ln( / ) 1,G R    and ** * 6.d     Long bubbles can be supported only if   

is very small. For instance, if 0.001  8( 10 ),   it must be that ** 13 ( ** 37).    ▄ 

 

5  Extension: Re-entering the Market after Selling 

The no-reentry assumption does much to simplify the analysis, and is quite defensible in high-

transaction-cost markets such as real estate. But in other asset markets, such as stock markets, 

transaction costs are low and frequent trading is typical. In these markets, the no-reentry 

assumption it is clearly unrealistic. Furthermore, it is not obvious that it is innocuous. It is thus 

worth asking whether bubbles continue to arise once agents are able to buy and sell whenever 

they want. In this subsection, I answer this question in the affirmative. Specifically, I show that 

there are bubbly equilibria where agents follow (22) even though they are allowed to reenter the 

market after selling.26 In these bubbles, agents could sell and reenter, but choose not to. To 

examine whether the reentry option makes a difference, I will revisit Lemmas 1-4. 

In situations captured by Lemmas 1 and 3, it is easy to see why agents choose not to 

reenter the market after selling. Along the equilibrium path, whenever an agent sells, she knows 

that the crash will arrive within one or, at most, two periods. Reentry would thus have to take 

place either at time ,T  i.e., when the price is about to collapse, or at time 1,T   i.e., after the 

crash. Clearly, agents will not choose to reenter. 

                                                 
26 The equilibrium concept from Section 3 should be expanded to account for the fact that, with allowed reentry, the 
payoff from selling is no longer given by the price. In the expanded definion (not presented here to conserve space, 
but available upon request), there is an expected return associated with being in the market and one associated with 
being out of the market, which reflects the reentry option. Every period, agents choose between the two returns. As 
in Section 3, these returns are well defined, since it is possible to work backwards from the post-crash payoffs. 
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      0 *t       0 **t  T  
  Period  t 95 96 97 98 99 100 101 102 103 104 105 106 107 108 

  Price tp  Medium High High High High High High High High High High Medium Low tf  

Type n                            

50 0t   
 

, 0supp ( )n t t  

 
depends  

on prices before  
 period 95. 

 
  
  
  
  
  
  
  
  
  
  
  

47,…,50 47,…,50 47,…,50 47,…,50 47,…,50 47,…,50 47,…,50 48,49,50 49,50 50 50 50 
             1.516 1.222 1.011 0.405  0 1 

51 47,…,51 47,…,51 47,…,51 47,…,51 47,…,51 47,…,51 47,…,51 48,…,51 49,50,51 50,51 50,51 50 
             1.876 1.516 1.222 1.011 0 1 
52 47,…,52 47,…,52 47,…,52 47,…,52 47,…,52 47,…,52 47,…,52 48,…,52 49,…,52 50,51,52 50,…,52 50 

             2.300 1.876 1.516 1.222 0 1 
53 47,…,53 47,…,53 47,…,53 47,…,53 47,…,53 47,…,53 47,…,53 48,…,53 49,…,53 50,…,53 50,…,53 50 
             2.796 2.300 1.876 1.516 0 1 

54 47,…,54 47,…,54 47,…,54 47,…,54 47,…,54 47,…,54 47,…,54 48,…,54 49,…,54 50,…,54 50,…,54 50 
         3.372 2.796 2.300 1.876 0 1 

55 47,…,55 47,…,55 47,…,55 47,…,55 47,…,55 47,…,55 47,…,55 48,…,55 49,…,55 50,…,55 50,…,55 50 
              4.052 3.372 2.796 2.300 0 1 

56 47,…,56 47,…,56 47,…,56 47,…,56 47,…,56 47,…,56 47,…,56 48,…,56 49,…,56 50,…,56 50,…,56 50 
             4.828 4.052 3.372 2.796 0 1 

57 47,…,57 47,…,57 47,…,57 47,…,57 47,…,57 47,…,57 47,…,57 48,…,57 49,…,57 50,…,57 50,…,57 50 
              5.728 4.828 4.052 3.372 0.050 1 

58    47,…,58 47,…,58 47,…,58 47,…,58 47,…,58 47,…,58 47,…,58 48,…,58 49,…,58 50,…,58 50,…,58 50 
              6.773 5.728 4.828 4.052 1.032 1 

 

Table 1 — Numerical Example 1: 0.001,  0.75,  / 1.618,G R  1/ 2,  40,N  1/ 60.   Equilibrium ( *, **) (50,56).    To fix ideas, 

let 
0

50.t   As in Figure 4, the realizations of noise are such that the bubble bursts as late as possible. If a cell has no shading, the type is still in the 

market. Light shading denotes that the type is currently selling, and darker shading that the type already sold in a previous period. Each cell 
contains, at the top, 

, 0
supp ( ).

n t
t  When agents see a high 

96
,p  they rule out 

0
46.t   High prices in periods 97-102 reveal no new information. Only 

as agents see high 103 104,  p p  and 105 ,p  they can successively discard 47, 48 and 49 from , 0supp ( ).n t t  From period 103t   onward, each cell also 

reports, at the bottom, the expected return from waiting relative to selling. If this is above (below) one, agents wait (sell). Post-crash, agents are 
indifferent between buying, selling and doing nothing. The boldfaced 1.011 for type 50 at time 105 and 51 at 106 is the right hand side of (24) 
evaluated at these parameter values. As we move down/left from these cells, the payoffs associated with waiting increase, as the probability of a 
crash at 1t   falls. The boldfaced 1.032 for type 58 at time 107 equals the right-hand-side of (27). As I show in the proofs of Lemmas 2 and 4, 
these cells represent the situations where types who are supposed to wait are most tempted to sell preemptively. In periods 97-102, agents know 
for sure that nobody is selling, and thus, have no incentive to sell. Details on how to calculate payoffs for all cells are available upon request. (As 

noted in footnote 8, the assumption that ,108 0supp ( ) {50}n t   for all n is literally true if 107
107 [ 7 / ],p G N     and approximately true 

otherwise. That is, if 107
107 [ 7 / ],p G N     type-50 agents have 50,108 0supp ( ) {50},t  while others have  ,108 0supp ( ) {50,51}.n t  ) 
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In situations captured by Lemmas 1 and 3, it is easy to see why agents choose not to 

reenter the market after selling. Along the equilibrium path, whenever an agent sells, she knows 

that the crash will arrive within one or, at most, two periods. Reentry would thus have to take 

place either at time ,T  i.e., when the price is about to collapse, or at time 1,T   i.e., after the 

crash. Clearly, agents will not choose to reenter. 

The reentry option turns out not to make a difference in situations captured by Lemma 2, 

either. Roughly (see Appendix D for details), reentry does not matter for the following reason. 

The reentry option makes preemptive sales more desirable by reducing their potential 

opportunity cost. After selling, if the bubble does not burst, reentering agents forego just one, 

instead of many, periods of appreciation. However, as I show in the proof of Lemma 2, of all 

sitations with **t n    and high 1,tp   the most critical situation for type-n agents is the one 

captured by (24). In this situation, even if the bubble does not burst at ,t  type-n agents will sell at 

time 1.t   This means that, even with forbidden reentry, the relevant opportunity cost to rule out 

preemptive sales already consists of just one period of forgone profit. Since the reentry option 

cannot reduce this opportunity cost, it cannot tilt the balance in favor of preemptive selling. 

Given the above reasoning, it is not surprising that the situations covered by Lemma 4 are 

the ones where the reentry option makes the greatest difference. In Lemma 4, if /G R e   and 

,d d  type-n agents wait at * 1t n     with medium 1tp   (preceded by 1d   high prices) for 

fear of missing out on a large return dW  if 0 .t n  This return is accumulated over a number of 

periods that may reach up to 1d   periods. Allowing reentry lowers this opportunity cost, since 

an agent who sells at t  and then sees a high tp  can reenter at 1,t   foregoing only part of  .dW  

The sell-or-wait choice is no longer governed by (27), since the return from selling (on the left) 

now includes a reentry return 1dW   with probability ( 2) ( 2)/ (1 )d de e       —the probability 

that 0t n  and tp  is high. Hence, waiting is now optimal if 

 
( 2) ( 2)

1( 2) ( 2)
1 1 .

1 1

d d

d dd d

e e
W W

e e

 

 
   

     
    

       

Since 1 1dW    for all 1,d   agents prefer selling and reentering (if tp  is high) to selling 

without the option to reenter. Still, if d —and hence dW —is large enough, not selling is better 

than selling and reentering. This is because agents who sell and reenter forego one period of 
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growth, and thus, part of .dW  For large enough ,d  this foregone part—which is related to the 

difference between dW  and 1dW  —is important enough to deter preemptive sales. To see this 

more precisely, use (26) and rearrange terms to rewrite the above inequality as  

   2 2( 3)
( 2) ( 2)/ 1 / 11

.
1 / 1 / 1

dd
d dG R G Re G

e e
e G R R G R


 



 
 

 

 
   



              
 (28)  

Note that the left hand side increases with ,d  but approaches 1/ (1 )e   as .d   The right 

hand side, since /G R e  , grows exponentially with .d  Thus, there is a positive d d  such 

that (28) holds if d d . However, once reentry is allowed, equilibria with d d d   vanish.28 

Other than the fact that the minimum d is lengthened from d  to ,d  there are no new 

requirements that equilibria with bubbles must satisfy once reentry is allowed. Hence, within the 

class of equilibria where agents follow (22), the possibility of reentry makes a quantitative, but 

not a qualitative, difference. The mechanisms protecting bubbles from preemptive sales remain 

the same, and long bubbles still arise. For parameter values as in Numerical Example 1, 13,d   

and thus, pairs ( *, **) ( , ),k k d     with 0k   and 13 18d   satisfy all inequalities. 

However, equilibria from Example 1 with 6 12d   vanish, as they are not “reentry proof”. 
 

6  Conclusion  

This paper extends existing models of greater fool’s bubbles (Allen, et al. (1993), Conlon (2004), 

and especially Abreu and Brunnermeier (2003)) by considering a fully rational economy with 

noisy prices and price responsiveness to selling pressure. The fact that bubbles arise in such an 

environment shows that it is possible to model the notion of information-driven speculation in a 

robust way, without sacrificing rationality, common priors, or market-clearing prices. By 

bringing models of speculation one step closer to standard economic theory, this paper 

contributes towards the goal of developing models that may be useful to address questions of 

optimal policy in the presence of bubbles.  

For future work, in addition to extending the theory to analyze policy, it may be desirable 

to refine some aspects of the model, for example by modeling the source of the growing 

                                                 
28 Inequality (28) dissuades type-n agents from selling at *t n j    with medium 

1t
p

  also if 1j   or less than 
1d   high prices precede 

1
.

t
p

  As in Lemma 4, both of these changes make preemptive selling less tempting. 
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availability of resources that can be invested into the bubble. This could perhaps be done by 

modeling leverage, or by modeling late arrival of agents into the market. Moreover, as 

Brunnermeier (2001) points out, in models bubbles burst typically burst abruptly, while in 

reality, they often deflate gradually. A version of the current model where the noisy component 

was not bounded might generate this sort of gradual decline.  
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APPENDIX A — Derivation of    

Evaluate (20) at * 1  , set /x G R  and find roots of 21 / (1 ) / (1 ) :x e xe e          

2 2 3 2 3 2 21 (1 ) 1 1 ( ) ( 1)( 1) ( 1).e x e x e x e x x e x x x x e x x                          
Clearly, 1x   is a root. For 1,x   we have, 2 21 0 .x e x x e x e         The quadratic 

formula yields roots x  (1 1 4 ) / 2.e e    Let (1 1 4 ) / 2e e      be the positive root, 

which is always above one. (  is increasing in   and approaches (1 5) / 2 1.618   as 0. 

) Inequality (20) evaluated at * 1   holds if  1 /G R    and fails if / .G R     
 

APPENDIX B — Proofs of Lemmas 2 and 4 

Proof of Lemma 2 — Consider an arbitary type 1n   at ** ,t n j    for any ** 0   and 

1.j   Let 1tp   be high. A type-n agent may be inclined to sell preemptively at t  for fear that the 

bubble may burst at 1.t   In fact, if 0 ,t n j   type- 0t  agents will sell at ** ,t n j    causing 

a crash at 1t   with probability .  In, and only in, the following cases (i)-(iv), type-n agents are 

not tempted to sell at t  because 0t n j   is either impossible (i-iii), or very unlikely (iv): 
 

(i) If at least one of the prices ( 1) 2, ,t d tp p    is medium, 0t  cannot be .n j  (Note that, 

since ( 1) * 1,t d n j        if t sp   was medium for some {2, , 1}s d   and 0t  was 

,n j  type- 0t  agents would have sold at time 1,t s   and 1tp   would not be high.)  

(ii) If ,j n  0t  cannot be ,n j  since 0t  cannot be less than 1. 

(iii) If ,j N  0t  cannot be ,n j  since 0t  cannot be less than ( 1).n N   

(iv) If **,j   type-n agents have yet to observe the signal as of time .t  If ** 1,N    sales 

cannot begin before all signals arrive. If ** 1,N    , 0 0 0supp ( ) { | },n t t n j     and 

, ( )n t n j   is 1 .e   Since / ,e G R   type-n agents prefer not to sell at .t  
 

Having ruled out preemptive sales if one or more of (i)-(iv) hold, it remains to discuss 

situations where none of these conditions apply, i.e., cases where min{ **, 1, 1}j n N    and 

t sp   is high 1, , 1.s d    To rule out preemptive sales in these cases, it suffices to focus on 

the case where 1.j   To see why, note that at ** ,t n j    , 0supp ( ) { , , },n t t n j n    with 

the probability that 0t n j   given by , ( ) 1/ (1 ),j
n t n j e e         which is greatest for 

1.j   Thus, if type-n agents do not to sell preemptively if 1,j   they will not do so either if 
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1.j   Let us then consider the situation faced by type-n agents at ** 1.t n     High prices 

( 1) 1, ,t d tp p     reveal to type-n agents that they were either first or second to observe the signal, 

i.e., that 0t  must be 1n   or .n  By (), probabilities , ( 1)n t n   and , ( ),n t n  are respectively given 

by 1/ (1 )e   and / (1 ).e e    If 0 1,t n   the first type will sell at .t  With probability ,  tp  

will be low, causing a crash at 1,t   and with probability 1 ,  tp  will be medium, and 1d   

types will sell at 1t   at the expected price 1.tG   (Since 2 ,d N   behavioral agents will be 

able to buy the shares). If 0 ,t n  nobody will sell at ,t  and type-n agents will sell at 1t   at a 

price 1.tG   In sum, waiting is best if (24) holds. If / (1 ) / (1 ),G R e e        (24) holds for 

any **.  Otherwise, it holds only for **  under the threshold given by (25). Q.E.D. 
 

Proof of Lemma 4 — The proof proceeds in two steps. In Step 1, I derive conditions under 

which type-n agents choose not to sell at * 1t n     with medium 1tp   if 3,n d   * 1,   and 

t sp   is high 2, , 2s d   . In Step 2, I show that, of all possible situations cases with 

*t n    and medium 1,tp   type-n agents are most tempted to sell in the situation considered in 

Step 1. Consequently, the conditions ruling out preemptive sales in Step 1 also suffice to rule out 

preemptive sales by type-n agents in all other situations with *t n    and medium 1.tp    

Step 1 — Suppose that * 1,t n     1tp   is medium, 3,n d   * 1,   and t sp   is high 

2, , 2.s d    Then, type-n agents think that 0t  could be anywhere from ( 2)n d   to ,n  i.e., 

, 0supp ( )n t t  is { ( 2), , }.n d n    If 0( 2) 2,n d t n      two or more types will sell at ,t  

causing a crash. If 0 1,t n   type 1n   will sell, causing a crash with probability .  In sum, if 

0 ,t n  waiting brings losses. To simplify, assume that, if 0 ,t n  the payoff from waiting is zero. 

Given this, type-n agents will wait at t  only if the expected (gross) return dW  if 0t n  is 

sufficiently large. Since ( 2) ( 2)/ (1 )d de e       is the probability that 0 ,t n  (27) is a 

sufficient condition for type-n agents to be willing to wait at time .t   

To derive (26), note that dW  depends on how long type-n agents ride the bubble after ,t  

which could amount to a maximum of 1d   periods. If 0 ,t n  every period from 1 *t n     to 

** 1,t d n      type-n agents will sell if the last price is medium (which will occur with 

probability 1 )  and wait if it is high (which will occur with probability ).  If all prices 
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1, ,t t dp p    are high, they will sell at 1 **,t d n      regardless of whether t dp   is high or 

medium. Thus, dW  is given by  

 
2 1

1 1 .
d d

d
G G G G G

W
R R R R R

    
                         

  

Since / 1,G R   this can be rewritten as (26). Since / ,G R e   ( 2)d
de W   grows 

exponentially with .d  In turn, this implies that (27) holds for high enough .d  To see this, 

substitute (26) into (27) and rearrange terms to obtain  

     1 1( 3)
( 2) / 11

(1 )
1 / 1

d dd
d G Re G G

e
e R G R R







 



  
 



                  
.        (29) 

The left-hand-side of (29) is increasing in ,d  but it approaches 1/ (1 )e   as .d   On 

the right, all terms are positive, and since /G R e  , some terms grow exponentially with .d  

Thus, (29) holds for d  above some threshold .d  Finally, I derived (26) and (29) assuming that 

all is lost in the crash, a good approximation if *  is large. But for small *,  type-n agents are 

even less inclined to sell at ,t  because they will lose less in the event of a crash.  

Step 2 — Of all possible cases with *t n    and medium 1,tp   type-n agents are most inclined 

to sell if * 1,t n     * 1,   and t sp   is high {2, , 2}.s d    In this case, the support of 0t  

contains 2d   ‘bad’ values ( 2), , 1,n d n    for which 0 ,t n  and one ‘good’ value, 0 ,t n  

for which waiting at t  yields a large return .dW  In all other cases with *t n    and medium 

1tp   the support of 0t  contains less bad values and/or more good values, making a crash at 1t   

less likely, and a large return more likely. To see this, observe how , 0supp ( )n t t  changes when 

1tp   is medium, but it is no longer the case that * 1,t n      * 1,   3,n d   and t sp   is high 

{2, , 2}.s d    Every change in conditions makes waiting more attractive, by reducing the 

number of bad values or increasing the number of good values of 0t  in , 0supp ( )n t t . 

(i) Let * ,t n j    2,j   and *,j   (with 3n d   and high t sp   {2, , 2}).s d    If 

( 2),j N d    the set , 0supp ( ) { ( 1), , }n t t n j d n      contains 2d   bad values 

( 1), , ,n j d n j      and j  good values 1, , .n j n    Moreover, the expected return 
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if 0 1t n j    exceeds .dW  If ( 2),j N d    there are less than 2d   bad values 

values, because ( 1) ( 1).n j d n N        

(ii) If *t n j    and *,j  (with 3n d   and high t sp   {2, , 2})s d   , , 0supp ( )n t t  

equals { | ( 1)},n j d       i.e., type-n agents have yet to observe the signal as of time 

.t  There may be up to 2d   bad values, but there are infinitely many good values.  

(iii) If 3,n d   (with * 1,t n     * 1,   and high t sp  {2, , 2})s d   , type-n agents 

know, from their signal, that 0t  cannot be ( 2),n d   since ( 2) 0.n d    Type-n 

agents can thus eliminate 3d n   bad values from , 0supp ( ).n t t  

(iv) If there are 1k d   consecutive high prices before 1,tp   , 0supp ( ) { ( 1), , },n t t n k n     

i.e., the number of bad values falls from 2d   to 1.k   This makes the good value 0t n  

relatively more likely. Also note that t sp   can be high {2, , 2}s d    only if 3.t d     

If more than one of (i)-(iv) apply, several factors make waiting more desirable than in Step 1. 

The number of good values exceeds 1 and/or the number of bad values falls below 2.d   Q.E.D. 
 

APPENDIX C — Proof that  /
I

G R   . 

 /
I

e
G R



  
2(1 )

1

e e e

e

  



 


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



2
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(1 1 4 )
2 1 1 1 4

2 1

2
1 1 4 1
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e

e

e
e

e
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








 









  
      

    


2 4

2

4 4
1

1 (1 )

e e

e e

 

 

 

   
 

4
4e  

2 4

1

e

e







 


4

2
4

(1 )

e

e







 


2 4 2 2 3 2 3(1 ) (1 ) 1 2 1 .

e

e e e e e e e e e e e e



           



                         Q.E.D.

 

 

APPENDIX D — Details of Subsection 5.1 

 Consider a type-n agent at time ** ,t n j    with 1j   and high 1.tp   Instead of 

waiting, agents can sell with the option to reenter later. This has the benefit of protecting the 

agent against a crash if the bubble bursts, and the cost of foregoing capital gains (between the 

time of sale and reentry) if the bubble continues to grow. Clearly, since the benefit from 

preemptive selling is avoiding a crash, preemptive selling is suboptimal in cases (i)-(iv), as listed 

in the proof of Lemma 2. In all these cases, the crash probability is either zero or very small.  

Thus, as in Lemma 2, the situations of interest are those with min{ **, 1, 1}j n N    

and high t sp   1, , 1.s d    To revisit type-n agents’ sell-or-wait tradeoffs in these situations, 
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let us first invest a little in notation, letting j  denote the (gross expected discounted) return 

earned by a type-n agent if she follows the equilibrium strategy from **t n j    onward. 

Note that 1  equals the right-hand-side of (24), and that, if 2 1,j d    

 
( ** 1)

1

1 1
1 1 .

1 1j jj j

G G

e R R e



     
 

 

                    
 

That is, if the agent waits at ,t  the bubble will burst with probability / (1 ),je     the agent 

will sell at 1t   if tp  is medium—which will happen with probability (1 ) —and with the 

remaining probability, tp  will be high and the agent will earn /G R  times 1.j   Now compare 

this with the expected return from selling preemptively and reentering at 1t   if tp  is high. This 

return is 1 if the agent does not reenter and 1j   if she reenters—which she will do with 

probability (1 ) . Hence, the return from selling and possibly reentering is 

1

1 1
1 1 1 .

1 1 jj je e     

                
 

Clearly, if (24) holds and 1 1,j    j  exceeds the value of this last expression. The difference 

only grows when taking into account the fact that, by Lemma 2, 1 1j    for 2 1.j d    A 

similar argument (a bit more cumbersome notationally, and available upon request) rules out 

preemptive selling with reentry option if j  exceeds 1,d   in which case agents will reenter the 

market after selling even after a medium .tp   

Finally, note that, since staying in the market is better than selling preemptively (with 

reentry option) for all ,j agents have no incentive to sell preemptively and reenter after multiple 

periods. Staying out for more than one period serves only to compound the expected opportunity 

costs relative to staying in the market. 
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